The evolution of material culture and technology in the context of industrial activity in Eurasia
Automatic translate
The historical development of handicraft production in the territory occupied by modern-day Russia is directly dependent on the demands of hunting. For centuries, hunting remained the primary source of protein, fur, and household materials in the forest and forest-steppe zones. The need for efficient hunting dictated specific engineering challenges for craftsmen. Blacksmiths, tanners, and carpenters were forced to adapt their products to the harsh climate and biological characteristics of their prey. This process led to the development of unique technological solutions that subsequently formed the foundation of entire industries.
Metallurgy and Blacksmithing: Bladed Weapon Specialization
Metalworking for hunters required different approaches than the manufacture of military weapons or agricultural implements. A hunting blade must possess a specific set of characteristics: it must hold an edge for a long time when butchering a carcass, withstand the impact of chopping bones, and maintain its strength in freezing temperatures.
Technology of making a pitchfork
The spear was the primary tool for hunting large and dangerous game, primarily bears. It was a heavy spear with a broad tip. The metallurgy involved in creating a spear presented a complex challenge for village and urban blacksmiths. The spear’s blade (tip) often weighed up to 1 kg and was up to 40–50 cm long.
The main challenge was ensuring strength while maintaining cutting properties. Craftsmen used a technique of welding high-carbon steel onto a soft iron base. The central part of the blade, which bears the brunt of impact and fracture, was forged from ductile iron. The cutting edges were formed from hard steel, produced by a cementation process. This allowed the weapon to resist breaking when striking bone and bending under the weight of the animal.
Particular attention was paid to the neck of the spearhead — the transition between the feather and the shaft. Here, the metal had to be as thick as possible and free of internal defects. Blacksmiths used repeated forging to compact the metal structure. A crosspiece was essential, preventing the game from slipping onto the hunter. It was made separately and attached to the neck by forge welding or with rawhide straps through special holes.
Knife production and regional types
In Rus’ and Siberia, a hunting knife was rarely used as a weapon. It was a universal survival tool. The shape and metallurgy of knives varied depending on geography.
In the European part of the world, knives with straight spines and set-in handles were prevalent. The blade was forged using the "sandwich" (laminate) principle: a hard core sandwiched between soft iron facings. This design allowed the knife to remain sharp for a long time, while the soft facings protected the fragile core from breakage in the cold. Handles were made of birch bark or burl, materials that do not chill the hand at low temperatures.
The "Yakut" type of knife developed in Siberia. Its distinctive feature is its asymmetrical cross-section. On one side, the blade is flat (sometimes with a fuller), while on the other, it is convex (lenticular). This geometry was no accident. It facilitates woodworking and allows for easy shaping of frozen meat or fish. When sharpening, only one side is processed, simplifying field maintenance. Forging the fuller (colloquially called the bloodline, but technically called the stiffening ribs) allowed for savings on expensive metal, making the blade both light and rigid.
Special purpose axes
A hunting axe differed from a carpenter’s axe. While a carpenter’s axe had a wide blade for chopping logs, a hunting axe required a different balance. A hunter had to carry the axe for tens of kilometers. The weight of the axe dropped to 600–800 grams.
The blade was narrow and wedge-shaped, allowing for deep cutting into wood when felling dead wood for fires. The butt was often reinforced, as the axe was used as a hammer for setting traps or repairing skis. The eye (the hole for the axe handle) was forged to allow for quick handle replacement in the forest. The metal was tempered in zones: the blade had high hardness (around 55–58 HRC on the modern scale), while the butt remained ductile to prevent cracking from being struck by a stone or other tool.
Woodworking and engineering solutions in traps
Hunting with traps (passive fishing gear) stimulated the development of precision woodworking and an understanding of mechanics. A hunter had to create a complex mechanism using only an axe and a knife, without nails or springs.
Mechanics of wooden traps
The most common types of traps were kulems and planks. They operated using gravity and a system of levers.
A sable trap is a structure made of two logs placed one above the other. The upper log (the weight) falls onto the lower log (the threshold) when the trigger is triggered. The manufacture of the trigger mechanism required high precision. The parts were cut from hardwoods (birch, oak) to prevent premature wear or deformation from moisture.
The lever system was designed so that the slightest touch of the animal on the bait would release the retaining element, which was pressed by the weight of the log, weighing tens of kilograms. The craftsmen empirically came to understand the principles of leverage and friction. The sensitivity of the trigger was adjusted by the geometry of the cutouts on the parts: shallower angles ensured an easy release, while straighter angles provided a secure hold.
Transport technologies: skiing
The making of skis (lamps, golitsy) was the pinnacle of woodworking craftsmanship among hunters. Skis had to support the weight of a hunter and his load, not sink into loose snow, and be resilient.
The selection of materials began in the forest. They sought straight-grained spruce, aspen, or birch, free of knots. The workpiece was split rather than sawn to preserve the integrity of the wood fibers. This ensured the product’s bending strength.
The technology for bending ski tips involved steaming wood. The blank was boiled in a cauldron or heated over steam, after which it was fixed in a special template machine. A crucial step was creating a weight deflection — the central part of the ski was bent upward. This acted like a spring, distributing the hunter’s weight evenly along the entire length of the runner.
To prevent skis from sliding backwards (kickback) when climbing a mountain, skis were lined with kamus — the skin of elk or deer legs. The hair on the kamus grows in one direction. When moving forward, it presses against the skis and slides; when moving backward, it stands on end and slows them down. Attaching the kamus required special adhesives (fish glue) and sewing skills to ensure the seams didn’t create drag.
Chemical technologies: leather dressing and preservation
Fur harvesting was pointless without technologies for its primary processing and preservation. Untreated pelts quickly deteriorated. This forced hunters to master complex chemical tanning processes.
Fat and smoke tanning
The oldest method of processing suede (rovduga) was greasing. The hide was scraped of its flesh (the subcutaneous fat layer) using bone or iron scrapers. It was then soaked in a mixture of animal brain, liver, and fat. The enzymes and fatty acids contained in the brain softened the collagen fibers of the dermis.
To seal the effect and make the leather waterproof, smoking was used. The hides were suspended over smoldering rotten wood. The aldehydes in the smoke reacted with the leather proteins, tanning the leather. The leather acquired a characteristic yellow-brown color and a distinctive odor, but most importantly, it did not harden after being wet and dried. This method was widely used for making clothing and footwear.
Vegetable tanning
Tanning developed in forested areas rich in willow and oak. Bark was collected in the spring, when the tannin content was at its highest. Decoctions were prepared from the bark. Immersing hides in these solutions required careful control of concentration and time. A weak solution could lead to rotting, while too strong a solution could "burn" the leather, tanning the outer layer and blocking the penetration of tannins.
Craftsmen created vats from solid linden or oak trunks. The process could take anywhere from several weeks to months. The resulting leather was used to make belts, bags, scabbards, and harnesses. It was tough but extremely durable.
Firearms: Adaptation for the Industry
With the advent of firearms, hunting requirements began to impact the weapons industry. Military muskets were too heavy, oversized (which damaged the hide), and required a lot of lead and gunpowder.
Evolution of barrel production
Fishermen demanded light, small-caliber weapons. This is how the "Siberian rifles" and other regional types emerged. Blacksmiths in Tula and Izhevsk and private craftsmen in the Urals began producing barrels with a caliber of 6–8 mm (according to the old classification, 2–3 lines).
Forging a small-caliber rifled barrel by hand was a technological challenge. Using forge welding, a strip of iron was rolled into a tube on a mandrel. The weld had to be flawless to withstand the gas pressure. The bore was drilled on primitive water-powered or hand-operated machines. The rifling (the spiral grooves inside the barrel) was created using a serrated steel rod called a trellis. The artisan pulled it through the barrel hundreds of times, gradually deepening the grooves.
The small caliber allowed a hunter to venture into the taiga for months at a time, carrying enough lead and gunpowder for hundreds of shots. Economic feasibility dictated the design parameters.
Combination weapons
The specific nature of hunting, where both squirrels and bears can be encountered, led to the development of combination guns (double and triple). Joining a smoothbore barrel (for shot) and a rifled barrel (for slugs) into a single unit required precise fitting and soldering. The inter-barrel ribs must ensure the midpoint of impact of both barrels is aligned at a specific range. Thermal expansion during firing from one barrel must not distort the unit or disrupt the sights of the other. Solving these problems contributed to the development of gunsmithing skills.
Bone carving and small sculpture
Hunting provided material not only for clothing and food, but also for making bone and horn tools. These raw materials were affordable, durable, and easy to work with.
Functional bone products
Calls — wind instruments for luring game — were made from the tubular bones of birds and animals. Creating a call required a knowledge of acoustics. The thickness of the walls, the length of the chamber, and the shape of the reed — all affected the timbre of the sound. A hazel grouse call should produce a thin, high-pitched squeak, while a goose call should produce guttural, low-pitched sounds. Craftsmen selected the material individually, often combining bone with wood and resin to fine-tune the tone.
Elk horn was used to make knife handles, powder flasks, and harness components. Horn is more ductile than bone and does not splinter when struck. Horn powder flasks were hermetically sealed, protecting the hygroscopic black powder from moisture. The shape of the horn often dictated the shape of the product, leading to the creation of ergonomic, curved containers convenient for wearing on the belt.
Textiles and weaving: nets and traps
Fishing and bird hunting necessitated the production of nets. This spurred the cultivation of fiber crops (hemp, flax) and the development of spinning.
Network production
The thread used for hunting nets (slings, tents) must be strong and rot-resistant. Nettle and hemp fibers were subjected to extensive processing: soaking, scutching, and carding. The thread was twisted to achieve the required elasticity.
Вязка сетей осуществлялась специальными челноками (иглицами). Размер ячеи строго регламентировался видом добычи. Для уток использовалась одна ячея, для зайцев — другая. Узлы должны быть неползущими, чтобы ячея не меняла форму под нагрузкой. Сети пропитывали отварами коры или дёгтем для защиты от влаги и микроорганизмов, разрушающих растительные волокна.
Амуниция и снаряжение: эргономика выживания
Комплекс одежды и снаряжения охотника представлял собой интегрированную систему жизнеобеспечения. Каждый элемент создавался с учётом анатомии и физики движений.
Обувь: поршни и ичиги
Обувь для ходовой охоты должна быть лёгкой, бесшумной и тёплой. Поршни — простейшая обувь из цельного куска кожи, стянутого ремешком вокруг лодыжки. Их изготавливали из сыромятной кожи. При высыхании она твердела и могла натереть ногу, поэтому такую обувь постоянно жировали.
Более сложной конструкцией были ичиги — высокие сапоги из мягкой кожи с особым кроем голенища. Подошва часто делалась многослойной, с прокладкой из войлока или бересты. Это обеспечивало термоизоляцию. Особенность кроя заключалась в отсутствии грубых швов в местах сгиба стопы.
Поняга и крошни
Для переноски грузов (добычи, припасов) использовались поняги — прообразы современных станковых рюкзаков. Основой служила рама из изогнутого прута черёмухи или можжевельника. К раме крепился лист бересты или сетка из ремней.
Конструкция поняги обеспечивала вентиляцию спины и правильное распределение веса на бедра и плечи. Деревянная рама пружинила при ходьбе, гася инерцию груза. Система крепления лямок позволяла быстро сбросить груз в случае опасности (например, при встрече с хищником или падении в воду). Это пример глубокого продумывания эргономики изделия.
Собаководство как стимул для ремёсел
Содержание охотничьих собак требовало специального инвентаря. Ошейники должны быть прочными, чтобы удержать зверя, но не травмировать собаку. Часто их подбивали войлоком изнутри. Снаружи ошейники для собак, работающих по волку, могли оснащаться шипами для защиты шеи питомца.
Сворки (поводки) плели из сыромятной кожи в несколько прядей. Техника круглого плетения позволяла создать трос, который слегка растягивался при рывке, амортизируя нагрузку. Карабины и вертлюги (детали, предотвращающие перекручивание поводка) ковались кузнецами с высокой точностью. Вертлюг — сложный узел, требующий свободной вращающейся посадки стержня в кольце, что для кустарного производства было нетривиальной задачей.
Влияние географии на инструментарий
Огромная территория определила разнообразие подходов к созданию инструментов.
Северные морские зверобои
У поморов и жителей побережья Ледовитого океана охота на морского зверя (тюленя, моржа) требовала особого инвентаря. Гарпуны оснащались отделяемыми наконечниками. Конструкция предусматривала поворот наконечника в теле животного, что не давало ему выскочить. Это требовало сложной слесарной подгонки сочленений кости и металла.
Лодки (карбасы) шились вицей (корнями можжевельника или ели), так как металлические гвозди ржавели в морской воде и были дороги. Швы просмаливались. Такая “шитая” лодка была более гибкой и лучше переносила удары о льдины, чем жёсткая конструкция на гвоздях.
Степная зона и борзые
В степных районах, где практиковалась псовая охота, развивалось шорное дело. Сбруя для лошадей, седла, своры для борзых — всё это требовало высококачественной кожи и металлической фурнитуры. Седла для охоты отличались от военных или пастушьих. Они должны обеспечивать комфорт при длительных переходах и надёжную посадку при резких маневрах во время травли зверя.
Роль бересты в промысловом быту
Береста являлась универсальным “пластиком” прошлого. Ее свойства — водонепроницаемость, стойкость к гниению, лёгкость — делали её незаменимой.
Туеса и короба из бересты использовались для хранения продуктов. Благодаря содержанию бетулина (природного антисептика) в бересте, продукты долго не портились. Конструкция туеса (сколотня) подразумевала использование цельного “чулка”, снятого с дерева, без вертикального шва. Внутренний слой выворачивался лицевой стороной внутрь для герметичности. Внешний слой декорировался и служил каркасом. Между слоями оставалась воздушная прослойка, работающая как термос.
Охотники делали из бересты временные жилища (чумы, балаганы), лодки-берестянки и даже посуду, в которой можно было кипятить воду на углях (при условии, что огонь не касается стенок выше уровня воды).
Закрытые циклы производства
В отдалённых промысловых районах формировались автономные производственные циклы. Охотничья артель могла самостоятельно обеспечить себя всем необходимым, от лыж до пуль.
Литье пуль осуществлялось в каменных или металлических пулелейках. Свинец добывали из старых запасов или выменивали. При отсутствии свинца использовали “сечку” — рубленое железо, завёрнутое в кожу или бересту, чтобы не повредить ствол.
Снаряжение патронов (для огнестрельного периода) требовало точных мерок. Их делали из кости или гильз. Охотник знал баллистику своего ружья и подбирал навеску пороха индивидуально, учитывая температуру воздуха (в мороз порох горит медленнее, нужно больше) и вес пули.
Социальный аспект: передача мастерства
Изготовление охотничьих инструментов не преподавалось в школах. Знания передавались от отца к сыну или от мастера к подмастерью. Секреты закалки стали, рецепты смесей для дубления, геометрия ловушек — всё это составляло нематериальный капитал семьи или общины.
Существовало разделение труда. В крупных сёлах могли работать профессиональные кузнецы-оружейники, чья продукция расходилась на сотни вёрст. В то же время мелкий ремонт и изготовление простых инструментов (ловушки, лыжи) оставались навыком каждого охотника. Умение починить ружье или перековать нож в тайге часто было вопросом жизни и смерти.
Стандартизация и индивидуализация
An interesting feature is the balance between standardization and individual customization. Traps and knife shapes were regionally standardized (time-tested). However, each tool was tailored to the owner’s hand. The length of a spear shaft corresponded to the hunter’s height. A rifle’s stock was shaped so that when raising the weapon, the eye would immediately be on the line of sight (the so-called "butt fit").
Interaction of materials
The craftsmen masterfully combined materials with different physical properties: wood and bone, leather and metal, birch bark and resin.
An example of such symbiosis is a knife with a birch bark handle. Birch bark slabs were mounted on the blade’s tang and pressed together. The resulting handle was warm to the touch, resistant to slippery blood or grease, resistant to rot, and dampened blade vibrations. A metal bolster (fixing) protected the butt of the handle from splitting.
The influence of hunting on the development of precision mechanics
The need to create reliable trigger mechanisms for traps and firearms laid the foundations of precision mechanics in Russia. Tula gunsmiths, who began with arquebuses and hunting rifles, later became the elite of technical thought, creating complex machine tools and instruments.
Flintlock and percussion cap locks required the manufacture of tiny springs, screws, and levers. Heat-treating these small components was a delicate process. Over-tempering made the spring brittle, under-tempering made it soft. Craftsmen learned to determine the temperature by the color of the annealing (oxide film on the metal) with an accuracy of tens of degrees.
Specialization of tools by game species
The diversity of fauna dictated the diversity of tools.
- For fur-bearing animals: Blunt arrows (tomars) with a thickened tip instead of a point were required to stun the animal without damaging its pelt. Later, smaller gunpowder charges were used.
- For birds: Nets, horsehair snares and special arrows with feathers that provided rotation (for flight stability) or, conversely, with a wide tip to hit wings were used.
- For ungulates: Pit traps, requiring extensive excavation work, and heavy spears were used.
The role of frugality and recycling
When resources were scarce, hunters threw nothing away. An old gun barrel could become a tool bushing. A worn scythe would be reforged into a knife. A broken ski would be used to make trap components. This culture of thriftiness encouraged ingenuity and the search for new uses for old materials.
Thus, the sinews left over from butchering a carcass were used to make incredibly strong threads for sewing clothing and attaching arrowheads. The sinews were dried, separated into fibers, and twisted. This thread did not rot and, when wet, swelled, sealing the needle hole in the seam, making shoes waterproof.
The aesthetics of functionalism
Although functionality was the primary criterion, tools were often decorated. Carvings on bone handles, embossing on scabbards, and silver or copper inlays on the wood of the stock. Ornamentation often served as a protective charm, intended to protect the hunter and bring good luck. But even decoration was not supposed to interfere with the tool’s function. Carvings on a knife handle, for example, improved grip.
Symbiosis of city and village
The production of hunting equipment linked urban craft centers and the industrial outskirts. The city supplied gun barrels, gunpowder, and high-quality steel. The countryside provided leather, fur, horn, and unique local designs (such as special skis), which were sometimes adopted by the city dwellers. The exchange of expertise flowed in both directions, enriching the country’s technical culture.
Logistics and storage
Making a tool was only part of the job. It had to be preserved. Gun cases were made of durable leather or thick felt. Knives had wooden sheaths, often made of two halves glued together and covered with oxtail leather (removable like a stocking). The wood inside the sheath was soaked in oil to prevent the blade from rusting.
When traps appeared later, boxes filled with pine needles or hay were used to store them, preventing the metal from absorbing odors that could repel animals. Preserving traps by boiling them in herbal infusions also became part of the hunting preparation process.
Thermal Engineering: Furriery and Clothing Design
Producing clothing for the trade was more than just sewing; it required the creation of a complex thermoregulation system. With temperatures dropping below -40°C, a mistake in cut or choice of material could cost lives. This spurred the development of furriery (fur processing) and tailoring techniques.
Cutting and assembly technologies
Hunting clothing, such as the malitsa or kukhlyanka, was designed as a heat-retaining capsule. The fur was usually positioned with the nap facing inward. This created a layer of air directly against the body, trapping heat more effectively than fur on the outside.
The main technological secret was the seams. A regular seam would become a cold bridge in freezing temperatures. Craftsmen used a technique of interlining the seams with strips of leather or deer hair (from the neck). When wet with snow, these interlinings swelled, sealing the junction between the needle and the material. The threads were made from deer dorsal tendons. They possessed the same elasticity as leather, so when the garment was deformed, the seams did not tear or tighten.
Differentiation of materials
Craftsmen distinguished between the topography of the hide. For soles, they used "brushes" (reindeer leg skin, or kamus), which is highly wear-resistant. For mittens, they used skins from the forelegs, where the fur is shorter but stiffer. For hoods and collars, they used the skins of young fawns or beavers, as their underfur is extremely dense and does not freeze from the animal’s breath.
Понимание свойств материалов привело к созданию комбинированной одежды. Например, верхняя часть обуви (голенище) шилась из дышащей кожи или сукна, чтобы отводить влагу от голени, а нижняя — из водонепроницаемой, жированной кожи.
Судостроение: гидродинамика малых форм
В летний и осенний периоды реки являлись единственными транспортными артериями. Охотничьи лодки (обласа, ветки, баты) требовали высокого мастерства в деревообработке. Задача состояла в создании судна, способного проходить по мелководью (осадка 10 – 15 см), быть устойчивым и достаточно лёгким для переноски через завалы.
Технология разводки бортов
Изготовление лодки-долблёнки из цельного ствола осины или тополя включало сложный термомеханический процесс. Сначала мастер выбирал сердцевину дерева тёслами, доводя толщину стенок до 15 – 20 мм. Однако просто выдолбленное бревно неустойчиво на воде.
Для придания лодке нужной формы и устойчивости применялась технология разводки. Внутрь корпуса наливали воду и бросали раскалённые камни. Вода закипала, древесина распаривалась и становилась пластичной. В этот момент мастер начинал вставлять распорки (опруги), постепенно расширяя борта.
Этот процесс требовал чувства материала: передержать — древесина станет рыхлой, недогреть — борт треснет. После остывания дерево “запоминало” форму. Толщина стенок готового изделия доводилась рубанками до 5 – 8 мм. Такая лодка весила не более 30 – 40 кг при грузоподъёмности до 300 кг.
Весла и шесты
Инструменты движения также адаптировались. Охотничье весло часто делалось узким и длинным, чтобы грести, не вынимая лопасть из воды (техника бесшумного гребка). Рукоять могла иметь специальный упор (костыль) для отталкивания от дна. Древесина для весел выбиралась плотная, но упругая — клён или ясень. Балансировка весла рассчитывалась так, чтобы оно не тонуло при падении в воду.
Кулинарная утилизация и консервация
Охота инициировала развитие методов длительного хранения продуктов без холода. Это требовало изготовления специализированного инвентаря для копчения и вяления.
Коптильные технологии
Для сохранения мяса и рыбы строились коптильни холодного копчения. Это были сооружения, где дым остывал до температуры 20 – 30 °C, прежде чем попасть к продукту. Инженерная задача заключалась в создании дымохода нужной длины (часто в земле) для охлаждения дыма и осаждения тяжёлых фракций (сажи, смол), которые могли испортить вкус.
Для жиротопления (вытопки медвежьего или барсучьего жира) применялись водяные бани. Прямой нагрев разрушал полезные свойства жира и приводил к прогорканию. Мастера изготавливали двойные котлы или использовали глиняные горшки, помещённые в ёмкости с кипящей водой. Очищенный жир хранился в герметичных пузырях животных или берестяных туесах, залитых воском.
Оптика и прицельные приспособления
До появления оптических прицелов охотники улучшали точность стрельбы механическими доработками оружия.
Эволюция мушки и целика
Standard factory sights often failed to satisfy hunters. Front sights were modified: they were made thinner for shooting at small targets, or a piece of silver (or bone) was soldered onto them for better visibility in twilight. A white dot on the front sight contrasted with the dark fur of the animal.
The rear sights were also modified. The rear sight shield was made with a notch of a specific shape. Hunters experimentally adjusted the width of the notch so that when quickly looking up, the eye would intuitively center the front sight.
In the North, simple "collimators" were used — tubes mounted on the barrel that limited the field of view and allowed for faster target acquisition. The manufacture of such devices required precise metalworking and soldering.
Ammunition reloading as an exact science
In the era of smoothbore guns and early rifles, reloading ammunition was a home craft requiring the precision of a pharmacist.
Casting and rolling of shot
Shot was cast by passing molten lead through a sieve into water. However, this shot (droplets) was teardrop-shaped and unstable. To improve ballistics, "grokhotals" — devices for rolling the shot — were used. These could be two cast-iron pans or millstones, between which the lead drops were rotated until they formed a spherical shape.
The pellets were calibrated through homemade sieves made from tin sheets pierced with nails. Consistency of pellet weight and size was critical for uniformity of the shot pattern (the pattern of damage).
Wads and obturation
To prevent the escape of powder gases (which reduces the sharpness of the shot), wads were made. They were cut from felt or leather using special punches. A punch is a hollow cylinder with a sharpened edge. The punch must be highly hardened to hold the tip, but the body of the tool must withstand hammer blows.
Wad sizing with a mixture of wax and fat served two purposes: it lubricated the barrel, preventing lead fouling, and improved the seal in the bore. Wad sizing recipes varied depending on the season: in winter, the mixture was softer to prevent it from hardening in the cold.
Tools for tanning hides: scrapers and hoops
Initial fur processing is a critical stage. Improperly skinned or dried pelts lose their value. This led to the development of specialized tools.
Geometry of scrapers
For fleshing (removing fat), scythes converted into knives or special scrapers were used. The scraper blade should not be razor-sharp, so as not to cut the skin (dermis). Sharpening was done at an obtuse angle, creating a micro-saw that tore away fat but glided over the thick leather.
The blade was often curved, following the contour of the straightening log used to work the hide. The handles of the scraper were positioned perpendicular to the blade for a comfortable two-handed grip and controlled pressure.
Embroidery hoop
The pelts were dried on straighteners — wooden struts. The straightener’s design (fork- or wedge-shaped) ensured uniform tension on the pelt as it dried.
An important engineering solution was the sliding design of the skinning rods (for example, two planks joined by a wedge). This allowed the width to be adjusted to the specific size of the prey and the dried skin to be easily removed by simply knocking out the wedge. The wood of the skinning rods was carefully sanded to prevent splinters from damaging the flesh.
Transportation on snow: sleds and drags
While skis carried the man, sleds carried the load. The sled design is a pinnacle of engineering in the Northern and Siberian peoples, combining lightness and strength.
Flexibility of connections
The sled’s design eschewed rigid fasteners (nails or screws). All joints were tied with straps through through-holes. This ensured the structure’s mobility. Over hummocks and uneven surfaces, the sled "breathed," bending but not breaking. A rigid structure under such conditions would have collapsed from vibrations and impact loads in a single trip.
The runners of sleds were lined with bone or (later) iron, and in freezing temperatures, they were doused with water to form an ice crust, minimizing friction. The runners were cut into the runners at a specific angle to compensate for lateral loads during turns.
Pharmacology and poisons
In some regions, hunting with poisonous substances (for example, for wolves or foxes) was practiced. This required knowledge of toxicology.
Poisons were prepared from plants (aconite) or putrefactive biomaterials. Handling them required special tools for grinding and dosing, preventing contact with the skin or respiratory tract. They were stored in airtight containers made of horn or bone, marked with special threads to prevent accidental use.
Metalworking: Tempering traps
With the spread of factory-made frame and plate traps in the 19th and 20th centuries, the need arose for their maintenance and modernization using artisanal methods.
Trap springs would "sag" (lose their elasticity) over time. Hunters mastered the process of re-tempering spring steel in field or village forges. The challenge lay in evenly heating the long leaf spring and properly tempering the metal. Cooling was often done in oil rather than water to avoid microcracks.
The trap’s teeth were filed down or additional spikes were welded on to securely hold the animal’s paw. The trigger’s sensitivity was fine-tuned with needle files to micron precision, ensuring the trap would trigger with a light press but would not be triggered by wind or falling snow.
Development of cartography and navigation instruments
While maps are not tools in the literal sense (like a hammer), creating navigational charts is part of the survival craft.
Tangles and tangles
A hunting area (putik) could extend for tens of kilometers. A system of notches on trees was used for orientation. An axe or a special chisel served as the tool. The shape and height of the notch conveyed information: the direction of rotation, the location of the trap, and the boundary of the area.
Houris (stone pyramids) or milestones were erected in open spaces of the tundra. Their construction had to withstand winds and be visible in snowstorms. This required an understanding of wind patterns and the selection of the right elevated locations.
Materials Economy: Zero Waste
The impact of hunting on crafts is characterized by the complete utilization of prey.
- Bile and glands: Used in folk medicine, required careful extraction and drying.
- Skulls and teeth: Used for jewelry and amulets, requiring fine carving and polishing.
- Intestines and bladders: After processing, they became windows in homes, containers for fat, or waterproof cloaks (kamleis). Processing of intestines included repeated washing, scraping, and inflating for drying.
Psychology of the tool
Crafting a tool was an act of mental preparation for the hunt. A hunter carving a gunstock or weaving a net would mentally imagine its intended use. This fostered a special attitude toward the object, not as a consumable, but as an extension of the body. A handcrafted tool rarely failed, as the craftsman knew its every knot and its breaking point.
With the advent of industry in the 19th and 20th centuries, the artisan’s role shifted from creating tools from scratch to thoroughly adapting factory-made products. Axes were resharpened, knives were re-handled, and factory-made cartridges were reloaded. This skill of "finishing" became an integral part of Russian hunting culture, surviving to this day. The ability to take a standard blank and transform it into a specialized tool for specific tasks is a direct legacy of centuries-old craftsmanship.