The Secret Mechanisms of the First Scientific Societies and the Architecture of Collective Intelligence
Automatic translate
The history of science is often portrayed as a gallery of solitary geniuses achieving breakthroughs in the quiet of their offices. The reality of the Scientific Revolution was different. The foundations of modern knowledge were laid by communities operating according to complex, sometimes conspiratorial rules. The first academies and scientific circles arose in response to the dogmatism of universities and the ideological pressure of the church. These organizations created a unique environment where experimental protocols coexisted with encrypted messages, and open demonstrations with closed meetings. An analysis of their inner workings reveals the mechanisms that transformed disparate observations into systemic science.
The Genesis of Intellectual Fraternities
The need to share knowledge has always existed, but the format of interaction has changed radically. Ancient schools and medieval monasteries preserved knowledge, but rarely sought to aggressively update it. The situation changed in the late 16th century. Scholars realized the inadequacy of individual efforts to describe the physical world. The volume of data grew exponentially. Astronomical tables, botanical catalogs, and anatomical atlases required collective verification.
The first associations resembled secret orders more than modern institutions. Members often concealed their activities from the authorities. This was motivated not only by fear of the Inquisition but also by a desire to maintain intellectual preeminence. Knowledge was viewed as a currency that could be dangerously devalued by premature disclosure.
The Lynx-Eyed Academy and the Paradox of Federico Cesi
In 1603, in Rome, eighteen-year-old aristocrat Federico Cesi founded the Accademia dei Lincei — the Academy of Lynx-Eyeds. The name alluded to the lynx’s legendary keenness of vision, capable of seeing through walls. It was a metaphor for the scientific method, which penetrates the essence of things beyond their outer layers. Participants signed a strict charter. It demanded not only devotion to science but also celibacy (although this rule was soon relaxed) and mutual support.
Cesi created a structure ahead of its time. The "Lynxes" didn’t just gather for discussions. They organized a network of correspondents across Europe. Members of the academy used codes to transmit observations, fearing interception of their communications. Galileo Galilei became the most famous member of the society. Galileo’s entry into the ranks of the "lynx-eyed" gave the organization prestige, but also incurred the wrath of the Vatican.
The Academy was the first to use the printing press as a tool for scientific debate, not just archiving. They published works that challenged Aristotelian physics. Internal correspondence among Academy members reveals a high level of self-censorship and secrecy. They developed special codes for discussing the heliocentric system to avoid accusations of heresy.
The Florentine Experiment and Anonymity
Half a century after the Roman initiative, the Accademia del Cimento emerged in Florence. This association, founded by Galileo’s students Evangelista Torricelli and Vincenzo Viviani, chose a different path. Their motto, "Provando e riprovando " (Checking and rechecking), became a manifesto of empiricism. But the main characteristic of the Cimento was its complete depersonalization.
The Academy published works under a collective name. Individual authorship was deliberately erased. This step served two purposes. First, it protected individual scholars from ecclesiastical persecution. Responsibility was diffused between all members of the group and their high-ranking patrons — the Medici family. Second, it reduced the level of internal competition. Scholars worked for a common goal, not for personal glory.
Cimento’s laboratory became a benchmark for metrology. Thermometers and barometers were standardized here. Glass tubes were blown by artisans using uniform templates, allowing for the comparison of results from experiments conducted on different days. The Academy’s reports, the famous Saggi , became a model for record-keeping: a dry description of conditions, actions, and results, free from philosophical speculation.
The Invisible College and the Birth of the Royal Society of London
In England, the process of institutionalizing science proceeded in parallel, but under different political conditions. The Civil War and the subsequent Restoration created the ground for people of different views to unite around the "new philosophy." A group of natural philosophers, calling themselves the "Invisible College," began meeting in the 1640s.
From these informal meetings, the Royal Society of London emerged in 1660. Its motto, "Nullius in verba" (By no one’s words), proclaimed a rejection of ancient authority in favor of experimental proof. However, behind the façade of openness lay a rigorous information management system. The Society functioned as an information hub.
The society’s secretary, Henry Oldenburg, created the first global network of scientific correspondents. He intercepted letters, translated them, and disseminated information, often acting as a mediator in disputes. Oldenburg effectively invented the scientific journal when he began publishing Philosophical Transactions in 1665. This change changed everything. Instead of thick monographs that took years to write, scientists were now able to publish short articles about specific discoveries.
Cryptography as a tool for protecting priority
One of the main problems of the time was the theft of ideas. Patent law, as we understand it today, didn’t exist. If a scientist discovered a law of nature, they faced a dilemma. Publish it immediately — they might find a mistake and ridicule it. Wait for a full review — someone else might publish it first and claim the credit.
The solution was anagrams. They were a kind of 17th-century cryptographic "blockchain." A scientist would formulate a discovery as a short phrase, rearrange the letters, and publish the nonsense. This would record the date of discovery. When the theory was confirmed, the author would break the code, proving their claim to the title.
Robert Hooke, the Royal Society’s curator of experiments, encrypted the law of elasticity (Hooke’s Law) with the anagram ceiiinosssttuv . Deciphered, it became Ut tensio, sic vis (As is the extension, so is the force). Galileo used this method to communicate the phases of Venus and the rings of Saturn. Christiaan Huygens concealed his discovery of Titan’s moon under a complex letter sequence. These "mind games" constituted an important layer of communication within scientific societies.
The conflict between Newton and Leibniz
The institutional power of the academies was evident in the famous dispute over priority in the creation of mathematical analysis. Isaac Newton, as president of the Royal Society, used his administrative resources to the fullest extent. The dispute with Gottfried Wilhelm Leibniz went beyond a personal squabble and became a war between two scientific schools.
The Royal Society appointed a commission to investigate the issue of priority. Newton, who effectively ran the commission from the shadows, wrote the final report himself, acknowledging its correctness. This event revealed the dark side of the centralization of science. The Society could not only promote truth but also canonize a particular version of history. Nevertheless, it was this very conflict that led to a clear recognition of the need to formally record the date of publication.
The Paris Academy and State Control
The French path to scientific development differed from the English. While the London Society was a dues-paying gentlemen’s club, the Paris Academy of Sciences, founded in 1666, became a state institution. Its founder, Jean-Baptiste Colbert, saw science as an instrument of state power. Scientists received a salary from King Louis XIV.
This gave rise to a different structure of secrecy. Research in ballistics, cartography, and hydraulics was often classified in the interests of the state. The Paris Academy introduced the practice of "sealed notes" (plis cachetés). A scientist could hand a secretary a sealed envelope describing an idea. The envelope was kept in the archives and opened only at the request of the author or in the event of a priority dispute. This practice persisted for centuries.
State funding enabled the implementation of large-scale projects. French academics embarked on expeditions to the equator and the Arctic Circle to measure the shape of the Earth. These missions required military-grade logistics, impossible for private individuals. The centralization of resources in Paris made French science dominant in the 18th century.
Anatomical theatres and public science
Paradoxically, the secrecy of research was combined with the publicity of demonstrations. Anatomical theaters became places where science met show. Public dissections attracted not only doctors but also aristocrats. However, real science was done behind the closed doors of dissecting rooms.
Within scientific societies, there was a hierarchy of access. Ordinary members could attend general meetings, but the core of the organization consisted of narrow committees. The London Society had a Council that decided which experiments should be shown to the king or published. Content filtering was strict. "Unsuccessful" experiments were often omitted from the minutes, creating the illusion of the continuous triumph of reason.
Language barrier and Latin
The first scientific societies faced the problem of language. Traditional Latin provided universality: a scholar from Naples could read the works of a colleague from Oxford. However, the development of national languages and the desire to popularize science demanded change. Philosophical Transactions began to be published in English, and the Journal des sçavans in French.
This created tension. On the one hand, science became more accessible to the local public. On the other, the unity of the "Republic of Learned" was disrupted. Societies were forced to hire a staff of translators. Academies’ secretaries conducted correspondence in Latin, acting as communication bridges. It was within these organizations that the distinctive, dry language of scientific prose, devoid of metaphor and ambiguity, began to develop.
The role of the experiment curators
The Royal Society created the position of Curator of Experiments. Robert Hooke held this position for a long time. His job was to prepare new experiments for each weekly meeting. This created incredible pressure, but it also stimulated ingenuity. Hooke improved Boyle’s air pump, the microscope, and many other instruments.
The mechanics of the meetings were rigorously honed. First, letters from foreign correspondents were read. Then came a demonstration of the experiment. Afterward, a discussion. Minutes were kept with legal precision. If an experiment failed (which often happened due to imperfect technology or weather), it was recorded. The culture of honestly admitting mistakes became the most important contribution of these societies. Unlike the alchemists, who hid their failures, the new scientists learned from them publicly, among their peers.
Leibniz and the German Model
Gottfried Leibniz, understanding the importance of institutionalization, spent years lobbying for the creation of academies in the German states and Russia. His vision was marked by globalism. He dreamed of a network of academies spanning the globe and exchanging information in a universal philosophical language.
The Berlin Scientific Society (later the Prussian Academy of Sciences), founded with his participation, faced a funding problem. Leibniz proposed an original solution: a monopoly on the printing of calendars. Proceeds from the almanacs’ sales would be used to purchase equipment and pay astronomers’ salaries. This economic mechanism allowed German science to survive in a context of state fragmentation.
Russian Breakthrough: Peter the Great Academy
Peter the Great, having visited the Paris Academy and the London Society, decided to import this institute to Russia. The St. Petersburg Academy of Sciences, opened after the emperor’s death in 1725, had a unique structure. It was not a club of amateurs, but a fully-fledged scientific research institute under the state.
Since Russia lacked its own personnel, it "bought" science. A-list stars were invited, including Daniil Bernoulli and Leonhard Euler. Contracts provided high salaries and complete freedom of research. The "secret" of the St. Petersburg Academy’s success was the concentration of talent in one place without the distraction of teaching (the academy’s university initially functioned poorly).
Euler, who spent most of his life in Russia, maintained a prodigious correspondence. Through him, St. Petersburg was closely connected to Berlin and Paris. The Academy’s archives contain thousands of letters demonstrating how complex problems in mechanics and astronomy were solved through private correspondence, which was later compiled into articles.
Standardization as a form of control
Scientific societies took on the role of legislators of weights and measures. Previously, each city could have its own pound and cubit. The development of physics required universal constants. At the end of the 18th century, the Paris Academy undertook the titanic task of creating the metric system.
This was not just a technical task, but a political act. The meter, defined as one forty-millionth of the Paris meridian, was to become the measure "for all times and for all peoples." The process of measuring the meridian arc was fraught with incredible difficulties: wars, revolutions, the arrest of astronomers. But the result was a standard preserved in the academy’s archives. The societies transformed the chaos of local measurements into an orderly system.
Journals and the peer-review system
As the flow of articles grew, the problem of quality control arose. Initially, the decision to publish was made by the secretary or president of the society. But as knowledge specialized, no one person could evaluate everything. A system later called peer review began to emerge.
The Royal Society of Medicine in Paris established a complex system of commissions in the late 18th century. Incoming reports of new drugs or treatments were sent to experts, who wrote reviews, often scathing. The archives preserve these internal reviews, full of sarcasm and harsh criticism of quackery. Thus, the institution of reputation was formed. Publication in an academic journal became a seal of quality, separating science from quackery.
Women in the Shadow of Academies
Официально первые академии были исключительно мужскими клубами. Однако женщины присутствовали в них незримо. Астрономы часто работали вместе с жёнами и дочерьми, которые вели вычисления и наблюдения. Маргарет Кавендиш стала первой женщиной, допущенной на заседание Королевского общества в XVII веке, но это было исключение, вызвавшее скандал.
В тени оставались и вычислители. С усложнением небесной механики требовались тысячи часов рутинных расчётов. Эту работу часто выполняли наёмные специалисты, чьи имена не попадали на обложки трактатов. Научные общества функционировали как фабрики, где разделение труда становилось все более явным.
Эволюция оборудования и инструментарий
Академии стали заказчиками высокоточного оборудования. Спрос со стороны астрономов стимулировал развитие оптики. Королевское общество тесно сотрудничало с лучшими мастерами Лондона. Создание телескопа превратилось из ремесла в науку. Ньютон лично шлифовал зеркала, разрабатывая новые сплавы для рефлекторов.
Инструменты, принадлежащие обществам, считались коллективной собственностью. Их выдавали для экспедиций под расписку. Журналы выдачи инструментов — интересный исторический источник. Они показывают, как приборы кочевали между учёными, ломались, чинились и модернизировались. Доступ к лучшему телескопу или микроскопу был привилегией, за которую велась внутриакадемическая борьба.
Ботанические сады и колониальная наука
Научные общества активно способствовали экспансии империй. Ботанические сады при академиях (например, Королевские сады Кью) стали центрами сбора информации о флоре колоний. Задача была прагматичной: найти новые лекарства, пряности или технические культуры.
Корреспонденты академий, отправлявшиеся в тропики, получали детальные инструкции: как сушить гербарий, как описывать местных жителей, как измерять приливы. Информация стекалась в метрополию, систематизировалась и превращалась в экономическое преимущество. Хинное дерево, каучук, чай — перемещение этих культур контролировалось научными обществами, часто под грифом секретности.
Наследие и трансформация
К XIX веку модель “джентльменского клуба” начала устаревать. Наука становилась профессией. Любители, составлявшие костяк ранних обществ, уступали место университетским профессорам и сотрудникам лабораторий. Однако структурная матрица, заложенная первыми академиями, сохранилась.
Научные журналы, система цитирования, конференции, грантовая поддержка — все эти элементы родились в ходе экспериментов XVII – XVIII веков. Секретность трансформировалась в корпоративную и государственную тайну, но базовый принцип остался неизменным: знание требует верификации сообществом.
The isolation of early groups has given way to global connectivity, but the communication methods honed by Oldenburg, Leibniz, and Euler form the foundation of modern information exchange. Email networks have become digital databases, and "sealed notes" have become preprints on servers. The architecture of collective intelligence, designed three hundred years ago, has proven its incredible resilience and effectiveness.
Social structure and financing
The issue of money was always a pressing one. Membership dues to the London Society were mandatory, and failure to pay could result in expulsion. Even Newton was exempted from dues only due to his precarious financial situation early in his career. This created a filter: only those with sufficient means or those who had found a wealthy patron could pursue science.
Patronage played a decisive role. Dedicating a book to a nobleman was a standard way to secure a subsidy. The title pages of scientific treatises were replete with lavish dedications to kings and dukes. It was a symbiotic relationship: the scholar received funds, and the patron gained the prestige of an enlightened ruler.
Religion and Science: A Complex Dance
Contrary to popular belief, the first scientific societies were not atheistic circles. Most of their members were deeply religious. Robert Boyle, for example, viewed the study of nature as a form of worship. The societies’ activities were positioned as reading the "Book of Nature," written by the Creator.
However, conflicts of interest were inevitable. The societies tried to avoid theological disputes. Their statutes expressly prohibited discussions of religion and politics at meetings. This was a wise decision, allowing people of different faiths (Catholics, Protestants, Anglicans) to sit at the same table and discuss physics. The secularization of science emerged not as a denial of God, but as a methodological technique for removing faith from the equation.
The role of illustration and knowledge visualization
The development of scientific societies spurred the art of scientific illustration. A verbal description of a new beetle species or the structure of tissue under a microscope was insufficient. Robert Hooke’s "Micrographia" astonished his contemporaries with its detailed engravings. A book-length depiction of a flea was a cultural shock.
Academies hired professional artists. Accuracy of drawing became a requirement. This led to the development of a distinctive style: minimal artistic embellishment, maximum detail, and adherence to scale. The visual language of science became internationalized faster than the written language.
Alchemy and Chemistry: Gap and Continuity
The early stages of the Royal Society’s work were not entirely free from the influence of Hermetic traditions. Isaac Newton and Robert Boyle were seriously involved in alchemy. However, the institutional structure of the academies contributed to the suppression of esotericism. The requirement for reproducibility of experiments killed alchemy. If a transmutation could not be repeated before a committee, it was not recognized as a fact.
Постепенно происходила терминологическая чистка. Метафорический язык алхимиков (“зелёный лев”, “королевская вода”) заменялся точными названиями веществ. Этот процесс занял десятилетия, но именно в трудах академических химиков, таких как Лавуазье (член Парижской академии), родилась современная номенклатура.
Метеорология и сети наблюдений
Одним из первых проектов, потребовавших массового участия, стала метеорология. Общества рассылали барометры и термометры своим корреспондентам в разные города. Требовалось снимать показания в одно и то же время суток. Так рождались первые погодные карты.
Сбор данных о климате имел огромное практическое значение для сельского хозяйства и мореплавания. Анализ этих массивов информации требовал новых математических методов. Статистика как наука во многом обязана своим развитием необходимости обрабатывать табличные данные, поступающие в академии.
Библиотеки и архивы
Накопление знаний требовало физического пространства. Библиотеки научных обществ стали хранилищами уникальных манускриптов. Обмен изданиями между академиями пополнял фонды. Каталогизация этих собраний стала отдельной научной задачей.
Систематизация знаний, предпринятая в энциклопедиях XVIII века, опиралась на ресурсы академических библиотек. Возможность прийти в одно место и ознакомиться с последними трудами коллег из других стран ускоряла прогресс. Библиотека была сердцем любого научного общества, местом случайных встреч и плодотворных дискуссий.
Медицинские секции и борьба с эпидемиями
В периоды чумы и оспы правительства обращались к научным обществам за рекомендациями. Академии создавали специальные комитеты по борьбе с заразой. Хотя медицина того времени была ещё слаба, статистический подход начал приносить плоды. Сбор данных о смертности, анализ эффективности карантинов и прививок (вариоляции) проходили через научные советы.
Дискуссии о пользе прививки от оспы были жаркими. Лондонское королевское общество сыграло решающую роль в легитимизации этого метода в Европе, опираясь на данные, полученные от корреспондентов из Османской империи. Авторитет организации помог преодолеть предрассудки и страх перед новой медицинской процедурой.
Инженерные решения и патенты
Связь науки с техникой была тесной. Общества рассматривали проекты новых машин: от насосов для откачки воды из шахт до новых типов кораблей. Часто академии выступали экспертами при выдаче королевских привилегий (аналогов патентов). Одобрение академии открывало двери для инвесторов.
Денис Папен, изобретатель парового котла, демонстрировал свои модели на заседаниях Королевского общества. Механики и часовщики были желанными гостями. Граница между теоретической наукой и инженерным делом была проницаемой, что способствовало быстрому внедрению открытий в практику.
Этика и нормы поведения
Внутри обществ вырабатывался кодекс поведения джентльмена-учёного. Споры должны были вестись корректно, аргументы должны опираться на факты, а не на личности. Конечно, в реальности ссоры были яростными, но идеал “беспристрастного наблюдателя” дисциплинировал умы.
Понятие научной честности начало кристаллизоваться именно тогда. Плагиат осуждался, подтасовка данных вела к остракизму. Репутация была главным капиталом. Потерять лицо перед коллегами было страшнее, чем потерять деньги. Этот этический фундамент держит научное сообщество до сих пор.
Американское философское общество
Пример европейских академий вдохновил колонистов в Америке. Бенджамин Франклин, сам выдающийся экспериментатор, основал Американское философское общество в 1743 году в Филадельфии. Целью было “продвижение полезных знаний”. Американская специфика заключалась в ещё большем прагматизме. Фокус был на сельском хозяйстве, навигации и изобретениях, улучшающих жизнь на фронтире.
Франклин использовал свои дипломатические связи в Европе для налаживания обмена с Лондоном и Парижем. Американская наука сразу включилась в глобальный контекст, не замыкаясь в провинциальности. Наблюдение прохождения Венеры по диску Солнца в 1769 году стало первым глобальным научным проектом с активным участием американских астрономов, координируемым академиями старого света.
Возрождение
Некоторые общества не выдерживали испытания временем. Accademia del Cimento просуществовала всего десять лет и распалась после отъезда покровителей. Но идея оказалась живучей. На месте распавшихся кружков возникали новые. К концу XVIII века практически каждая европейская столица имела свою академию наук.
Этот процесс был необратим. Наука вышла из монастырских келий и университетских кафедр схоластики на простор коллективного творчества. Механизмы, запущенные энтузиастами XVII века — рецензируемые журналы, международные конференции, стандарты измерений, — сформировали каркас современной цивилизации.
Республика писем и логистика знаний
Фундаментом, на котором строились научные общества, была “Республика писем”. Это понятие описывало интеллектуальное пространство, преодолевающее национальные границы. Однако за возвышенным названием скрывалась сложная физическая логистика. Пересылка корреспонденции в XVII – XVIII веках стоила дорого и была ненадёжной. Письмо из Лондона в Париж могло идти неделю, а в Санкт-Петербург — больше месяца.
Секретари академий тратили значительные суммы на почтовые расходы. Генри Ольденбург часто жаловался на нехватку средств для оплаты входящей корреспонденции. Чтобы сэкономить, использовали дипломатические каналы. Послы и курьеры перевозили пакеты с научными трактатами вместе с государственными депешами. Это создавало странный симбиоз: наука пользовалась каналами дипломатии, но декларировала свою независимость от политики государств.
Wars became a serious obstacle. During Anglo-Dutch or Anglo-French conflicts, direct mail became impossible. Scholars resorted to intermediaries in neutral countries. Letters traveled by circuitous routes through Switzerland or Hamburg. Intellectual exchange didn’t stop even under the roar of cannons, but it slowed, forcing researchers to wait months for a response to their hypotheses.
Lunar Society and the Industrial Revolution
Beyond the official Royal Academies, there were less formal but extremely influential groups. A striking example is the Birmingham Lunar Society, active in the second half of the 18th century. Its members — industrialists, inventors, and natural philosophers — met during the full moon to use the moonlight to illuminate their way home after dinner. Unlike the London aristocrats, the "lunatics" were practical.
This circle included James Watt, who perfected the steam engine, Matthew Boulton, the founder of manufacturing, and Josiah Wedgwood, who reformed pottery. Here, science was instantly converted into technology. Joseph Priestley’s chemical experiments were discussed in the context of improving industrial processes.
The Lunar Society became the catalyst for the Industrial Revolution in Britain. Instead of writing treatises in Latin, they built canals, designed machine tools, and introduced gas lighting. This model of collaboration between science and business anticipated the emergence of corporate R&D centers of the 20th century.
Transit of Venus: The First Global Project
In the second half of the 18th century, scientific societies organized an unprecedented undertaking — observing the transit of Venus across the Sun. This astronomical event, which occurred in 1761 and 1769, offered the chance to accurately calculate the distance from Earth to the Sun, which would allow the scale of the entire Solar System to be determined. Success required simultaneous observations from different points on the globe.
The Royal Society of London, the Paris Academy, and the St. Petersburg Academy of Sciences coordinated their efforts, setting aside the political differences of the Seven Years’ War. Expeditions were launched to Siberia, Tahiti, India, and Lapland. James Cook set out on his famous voyage on the Endeavour for precisely this purpose.
The logistics were monstrously complex. The astronomers carried bulky telescopes and precision clocks that had to be protected from moisture and shock. Many expedition members died from tropical diseases or in shipwrecks. The observation results were sent to Paris and London for processing. Despite the scattered data caused by the optical effects of Venus’s atmosphere, the astronomical unit was calculated with an accuracy of a few percent. This was a triumph of the collective wisdom and organizational skills of the academies.
Carl Linnaeus and his "apostles"
The Royal Swedish Academy of Sciences, founded in 1739, prioritized the systematization of living nature. Carl Linnaeus became its central figure. He transformed the academy into a hub for collecting botanical information from around the world. Linnaeus called his students "apostles" and sent them to the most dangerous corners of the planet.
The mission was simple: find, describe, and bring back new plant species. Daniel Solander accompanied Cook, Per Kalm explored North America, and Carl Thunberg penetrated closed Japan. The price for knowledge was high — a third of Linnaeus’s students never returned from their expeditions.
The herbariums and seeds sent allowed Linnaeus to create Systema Naturae — a unified classification of the plant and animal kingdoms. The introduction of binary nomenclature (genus and species) gave scientists a common language. Now the Swedish botanist and the Italian naturalist knew for sure they were talking about the same plant, regardless of its local name. This eliminated the chaos in biology and laid the foundation for understanding biodiversity.
Commission on Animal Magnetism
Scientific societies acted not only as generators of knowledge but also as arbiters in the fight against pseudoscience. In 1784, the Paris Academy of Sciences received a commission from King Louis XVI to investigate the work of Franz Mesmer. This Austrian physician claimed to have discovered "animal magnetism" — an invisible force capable of curing illnesses. His séances were wildly popular in Paris.
The commission included chemist Antoine Lavoisier, astronomer Jean Sylvain Bailly, and US Ambassador Benjamin Franklin. The scientists devised a series of experiments using a "blind method." Patients were told they were being magnetized, even though they weren’t, and vice versa.
The results showed that Mesmer’s effects were caused by the patients’ imagination, not physical force. In their final report, the commission concluded: "Imagination without magnetism produces convulsions, and magnetism without imagination produces nothing." This investigation became a classic example of the application of the scientific method to testing extraordinary claims and one of the first studies of the placebo effect.
The problem of longitude and the conflict of methods
One of the major practical problems of the era was determining longitude at sea. The British Parliament established the Council of Longitude, closely associated with the Royal Society, and offered a huge prize for solving the problem. This pitted two approaches: astronomical and mechanical.
The academic elite, led by astronomers (including Newton), relied on the lunar distance method. This required complex calculations and precise tables of lunar positions. A simple carpenter and watchmaker, John Harrison, proposed a different solution: a highly accurate chronometer.
Научное сообщество долгое время отвергало изобретение Гаррисона. Астрономы считали механическое решение “вульгарным” по сравнению с элегантностью небесной механики. Гаррисону пришлось десятилетиями бороться с бюрократией Королевского общества, чтобы получить заслуженную награду. Эта история демонстрирует снобизм, присущий ранним научным институтам, и их сопротивление решениям, исходящим от ремесленников, не входящих в элитарный круг.
Французская революция и террор против академий
Великая французская революция нанесла сокрушительный удар по старым институтам. В 1793 году Конвент постановил закрыть все королевские академии, назвав их оплотом аристократии и бесполезной роскошью. Якобинцы считали, что “Республика не нуждается в учёных”.
Это решение имело трагические последствия. Антуан Лавуазье был гильотинирован. Жан Сильвен Байи казнён. Кондорсе покончил с собой в тюрьме. Научная жизнь была парализована. Однако вскоре новое правительство осознало ошибку. Армии требовался порох, карты и оптические приборы.
В 1795 году был создан Национальный институт наук и искусств, заменивший старые академии. Новая структура была более демократичной и ещё теснее связанной с государством. Наполеон Бонапарт, ставший членом Института по секции механики, активно покровительствовал науке, видя в ней ресурс для военных побед. С этого момента начинается эра профессиональной, милитаризированной науки.
Издательское дело и тиражирование идей
Распространение знаний упиралось в технические ограничения полиграфии. Печать математических формул была кошмаром для типографов. Наборщикам не хватало специальных литер. Гравюры для иллюстраций резались на меди вручную, что делало тиражи дорогими.
Научные общества часто субсидировали издание трудов, которые коммерческие издатели считали убыточными. Principia Ньютона или труды Эйлера не могли стать бестселлерами в обычном понимании. Академии брали на себя риски, оплачивая бумагу и работу гравёров. Без этой финансовой “подушки” многие фундаментальные работы остались бы в рукописях.
Обмен журналами между обществами позволял преодолеть и цензурные барьеры. Издания, запрещённые церковью в одной стране, попадали в библиотеки академий другой под видом научного обмена. Академические библиотеки становились зонами интеллектуальной свободы.
Эдинбург и Шотландское Просвещение
В XVIII веке Эдинбург неожиданно стал одним из главных интеллектуальных центров Европы, получив прозвище “Северные Афины”. Королевское общество Эдинбурга, созданное в 1783 году, объединило блестящую плеяду мыслителей: Дэвида Юма, Адама Смита, Джозефа Блэка, Джеймса Хаттона.
A distinctive feature of the Scottish model was its close connection with the university. While in London the Royal Society was separated from teaching, in Edinburgh, professors formed the backbone of the society. This facilitated the rapid transfer of new knowledge to students. It was here that modern geology (thanks to Hutton) and economic theory were born. Edinburgh’s atmosphere was more democratic and interdisciplinary than that of hierarchical London.
Collections and cabinets of curiosities
The first scientific societies began collecting material evidence of knowledge. Cabinets of curiosities (Kunstkamera) were transformed from chaotic collections of curiosities into systematic museum collections. The Royal Society had its own repository, housing stuffed animals, minerals, and ethnographic artifacts.
Over time, maintaining these collections became a burden. Storage required space and staff. In the 19th century, many societies transferred their collections to state museums. The British Museum’s collection largely grew out of the holdings of private individuals and scientific circles. This transition marked a paradigm shift: science ceased to be a matter of collecting and shifted to analysis and experimentation.
Specialization and the Decay of Universalism
By the early 19th century, the scope of knowledge had grown so vast that the ideal of the universal scientist became unattainable. At meetings of the Royal Society, chemists grew bored listening to geologists’ reports, and mathematicians failed to grasp the intricacies of botanical classification. The unified body of "natural philosophy" began to disintegrate.
Specialized societies began to emerge: the Linnean Society (biology), the Geological Society, and the Astronomical Society. The old academies retained their status as umbrella organizations, but real scientific work shifted to specialized groups. This improved the quality of discussions, but erected walls between disciplines. The language of science became more complex, becoming incomprehensible to the educated layperson.
Electricity: From Focus to Physics
For a long time, the study of electricity remained a parlor game. Sparks produced by electrical machines amused the public. However, scientific societies began systematically studying the phenomenon.
Benjamin Franklin, sending reports of his kite experiments to the Royal Society of London, elevated electricity from a curiosity to a branch of atmospheric physics. Alessandro Volta, presenting his "voltaic pile" (the first battery) to the Royal Society in 1800, ushered in the era of direct current. The publication of his letter to the society’s president, Joseph Banks, marked the official birth of electrochemistry and electrical engineering. Rapid verification of these discoveries through a network of societies allowed knowledge to spread rapidly across Europe.
Patronage and social mobility
For those from the lower classes, science was one of the few ways to climb the social ladder. Michael Faraday, who started out as a bookbinder, found his way into science by attending Humphry Davy’s lectures at the Royal Institution (a sister organization to the Royal Society, but with an emphasis on education).
By becoming an assistant and then a full member of the society, Faraday achieved a status unimaginable for a craftsman in Britain’s rigid class structure. Scientific societies created a meritocratic environment where talent could outweigh birth, although the barriers remained high.
Statistics and Public Administration
In the 19th century, societies began actively engaging in "political arithmetic" — as statistics was known. Collecting data on population, crop yields, crime, and trade ceased to be the work of officials and became the subject of scientific analysis. The Belgian astronomer and mathematician Adolphe Quetelet, using his connections to academia, applied probability theory to social data, introducing the concept of the "average man."
Academies were transformed into the think tanks of their eras. Governments increasingly commissioned them to provide expert analysis of reform projects. Knowledge became a tool of biopolitics — the management of the population through figures and facts.
The Role of Secretaries: The Gray Eminences of Science
The success of any society depended on the personality of its secretary. It was grueling work. The secretary kept minutes, edited journals, responded to hundreds of letters, and defuse conflicts. Henry Oldenburg in London, Bernard de Fontenelle in Paris, Friedrich Theodor Schubert in St. Petersburg — these men effectively controlled the scientific process.
Their communication style set the tone for the entire organization. Fontenelle, a brilliant writer, made the reports of the Paris Academy popular reading. His "Eulogies" to deceased academics created a pantheon of scientific heroes, shaping the community’s historical memory. The secretaries were the first professional managers of science.
The structures created three or four hundred years ago have proven remarkably adaptable. The grant application process is a direct descendant of the royal pension petition. The citation index is a digital embodiment of the respect expressed through references in 17th-century correspondence.
The very idea that truth is established not by decree of power, but by the consensus of a community of qualified experts, was born in the halls of the first academies. Experimental protocols have given way to databases (Big Data), but the principle of verifiability remains unshakable. Modern global science, with its preprints, conferences, and laboratories, is a "Republic of Letters" that has expanded to planetary proportions, still speaking its own, now digital, language.
The openness proclaimed in the first statutes today faces new challenges of commercial secrecy and national security, returning us to the dilemmas of Newton and Leibniz: how to balance the protection of privilege with the common good. The history of the first scientific societies is not just an archive of curiosities, but a working model of the social organization of knowledge.
You cannot comment Why?